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sides of a strip. As a consequence, the new surfaces 
form two different kinds of channels parallel to the 
strips, whereas the CLP, oCLP, tD, oDa and oDb 
surfaces form only one kind each. 

In contrast to minimal balance surfaces generated 
from catenoids, branched catenoids and multiple 
catenoids, minimal surfaces that may be generated 
from strip-like surface patches seem not to be re- 
stricted with respect to the axial ratio c/a. Apparently 
the distance between the rectangular nets may grow 
arbitrarily large. This property is not surprising with 
respect to those minimal surfaces that may be gener- 
ated also from disc-like surface patches. With respect 

to ST1 and ST2 surfaces the following idea may be 
helpful: a strip-like surface patch approximates in its 
central part more and more to a plane if the distance 
between its two boundaries becomes wider and wider. 
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Abstract 

A new phase refinement function that makes explicit 
use of the well resolved nature of the atomic peaks 
is presented. This function is first deduced for the 
one-dimensional case and then extended to the three- 
dimensional one. A new modified tangent formula 
can be derived from it. The effectiveness of this 
modified tangent formula is illustrated on the basis 
of some test structures. This function also seems to 
provide the X M Y  function of Debaerdemaeker & 
Woolfson [Acta Cryst. (1983), A39, 193-196] with a 
possible rational explanation. 

I. Introduction 

As a logical consequence of the availability of faster 
computers, a number of new multisolution direct 
methods have been developed in the last years for 
refining initially random sets of phases, e.g. the 
Y Z A R C  method of Baggio, Woolfson, Declercq & 
Germain (1978), the R A N T A N  approach of Yao 
Jia-xing (1981), the X M Y  function of Debaer- 
demaeker & Woolfson (1983) and more recently the 
Sayre (1952) equation tangent formula discussed by 
Debaerdemaeker, Tate & Woolfson (1985, 1988). Fol- 
lowing this trend, a new method has been investi- 
gated. It is based on the maximization of a function 
that explicitly incorporates, besides the positivity, 
another general and important property of the elec- 
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tron density, i.e. the atomicity. It will be shown that 
the introduction of this additional constraint makes 
this function especially well suited for refining 
initially random sets of phases via a modified tangent 
formula. 

2. The one-dimensional case 

2.1. Derivation of the new phase refinement function 

As is well known (Cochran, 1952), the integral 

a 2 ~ p a ( r ) d r  (1) 
ot  

must be a strong maximum, since p(r) ,  i.e. the electron 
density distribution of a one-dimensional model 
structure of cell period a, is positive and principally 
located at the atomic positions. On the other hand, 
if t represents a shift approximately equal to the 
average width of the atomic peaks, and since the 
atoms must be well resolved, then the integral 

a 2 ~ p(r+ t)p2(r) dr (2) 
o t  

will be small. Consequently, the difference between 
the two integrals, i.e. ( 1 ) - ( 2 ) ,  should be a large 
positive value for the true structure. However, (2) 
becomes a large positive value for wrong p(r) distri- 
butions containing poorly resolved peaks, i.e. peaks 
with widths greater than t. In these cases, the 
difference ( 1 ) -  (2) will be smaller. 
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The new phase refinement function ~ to be maxi- 
mized is defined for the one-dimensional case as 

O = a  2 ~ p3(r) d r - p a  2 ~ p ( r + t ) p 2 ( r ) d r  (3) 
ot at 

and, therefore, combines in a single expression two 
general properties of/9(r), i.e. the positivity and the 
atomicity, explicitly. ~ can only be a large maximum 
if (1) is large and positive and, simultaneously, (2) 
is small or slightly negative. The factor p allows one 
to modulate the weight of the integral (2) in (3) and 
is assumed to be unity in this paper. 

A rather common cause for the failure of conven- 
tional direct methods consists of the overlap of the 
two enantiomers in the resulting E map (Debaer- 
demaeker, 1982). Consequently, a function like (3) 
that minimizes the presence of partially overlapped 
peaks should reduce the incidence of this cause. 

If the atoms in p(r)  are assumed to be point atoms, 
then (3) may be approximated by means of the double 
summation 

O = E  { 1 - p e x p [ - i 2 7 r ( - h ) t ] }  
h 

X ~ [E_hEh,Eh_ h, exp it~ 3 
h '  

(4) 

where E h  = Eh exp iq9 h is the normalized structure fac- 
tor of reflection h, - 2 7 r ( - h ) t  is the phase shift intro- 
duced by the translation t, and c193 = ~-h + ~h, + ~h-h'. 
If 

Ch = 1 --p cos (-27rht) (5) 

and 
Sh = --p sin (-27rht) (6) 

then the first complex factor in (4) can be expressed 
in trigonometric form as 

1 - p  exp [ - i2 ,n ' ( -h ) t ]  = W-h exp i¢-h (7) 

with 
w_h = [ c~-h + s~-h] '/2 (8) 

and 
tan ~-h = S-h~ C-h. (9) 

If one substitutes (7) in (4), and since Wh = W-h and 
~h =--~:-h, the real expression (10) follows, i.e. 

a = Z Z W_~IE_~E~Eh-~,I exp i((P3 "~- f-h) 
h h' 

=E W_hZlE-hEh,Eh-h'[COS(~3+#-h). (10) 
h h '  

By developing the cosine term in (10) and consider- 
ing that C-h = W-h cOS ~:-h and S-h = W-h sin C-h, 
one obtains the following equivalent expression for 

J'~ = ~ ~ IE-hEh'Eh-h' ( C-h COS (J~3- S_h sin (~3)" 
h h '  

(11) 

i X 

If the shift were - t ,  the cosine term in (10) would be 

COS(@3--SC_h) and the minus sign in (11) would 
become positive. 

2.2. Practical example 

A one-dimensional equal-atom structure with 
atoms at 0.00, 0.20, 0.50 and 0-75 in a cell of length 
10 A has been selected to illustrate the application 
of O using (10) (Fig. 1 ). The phase refinement method 
employed is very simple and consists of regarding the 
phase value ~h that maximizes the corresponding 
internal summation h' in (10) as the refined one. This 
(,Oh is then used in the phase refinement of the sub- 
sequent reflections. 

The results of a series of consecutive refinements 
of initially random phase sets using this procedure 
(20 cycles each trial) are shown in Table 1. The correct 
and the refined phases of the triplets are given in 
Table 2. It can be seen how the refined phases of the 
triplets no longer tend towards zero. The significance 
of v(h, h') and tp(h, h') in Table 2 will be explained 
in § 3.2. 

3. The three-dimensional case 

3.1. The 12 function for non-centrosymmetrical struc- 
tures 

The three-dimensional J2 function is defined in 
direct space by 

~(-2= V 2 ~ p 3 ( r ) d r - p V  2 ~ ps(r)p2(r)dr (12) 
V V 

where 

V - ]  ps(r) ~ ~ {FkRj exp [ - i27rkRj( r+  g~-lt)] 
k j  

+ F-kRj exp [i27rkRj(r+ gj-lt)]} (13) 

= V -1 ~ ~ [exp (-i27rkt)Fkgj exp (-i27rkRjr) 
k j 

+exp (i2"rrkt)F_kgj exp (i2.n-kRjr)] (14) 

JORDI RIUS AND CARLES MIRAVITLLES 491 

Fig. 1. One-dimensional E map of the one-dimensional model 
structure computed with nine phases refined with function 12 
(mean phase error= 18 °, t =0.55/~); H =height of the E syn- 
thesis in arbitrary units, x = fractional coordinates. 
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Table 1. Results of the 1-2 refinement function for the 
one-dimensional example 

NPH = number of phases, NR = number of E2 relationships, NT = 
number of trials and MPHE = mean phase error in degrees with 
e.s.d.'s in parentheses. {Emi n = 0"71, [(sin 0)/A]max = 0"65 . ~ - t ,  t = 
0.55 A.} 

N P H  N R  N T  M P H E  

9 36 20 15(11) 16(12) 16(12) 20(15) 
21(17) 22(18) 22(19) 23(20) 
24(17) 28(21) 28(19) 34(28) 
34 (25) 34 (27) 36 (26) 40 (35) 
41 (35) 42 (35) 43 (24) 44 (35) 

Table 2. Values of v(h, h') and ~(h, h') and the correct 
and refined phases of the strongest triplets 

~b(h, h') 43  ~3ref 
- h  h' h - h '  [E3[ v(h ,  h ')  (o) (o) (o) 

- 4  - 9  13 1"5 1"5 -26  -20  20 
- 4  - 8  12 2"2 1"6 -27  46 38 
- 4  - 7  11 1"5 1"6 -27  -20  19 
- 4  - 6  10 1"4 1-6 -27  - 2 0  12 
- 4  - 4  8 3"4 1"3 -24  17 57 
- 6  - 7  13 0"6 1 "7 -29  90 89 
- 6  - 6  12 0.7 1.7 - 3 0  -57  - 1 0  

where Rj is the matrix o f the j th  point-group symmetry 
operation; Rf  tt gives the shifts of the electron-density 
peak; k are reflections belonging to one asymmetric 
unit of the reciprocal space; and V is the cell volume. 
Physically, ps(r) represents an electron density func- 
tion with the atomic peak modified in such a way 
that it is no longer spherical but splits up according 
to the shifts Rf~t. This means that if the peaks are 
well resolved, then the electron density will not form 
a maximum at the centre of the peak, but will be 
concentrated at the ends of the vectors Ri~t and, 
therefore, the second integral in (12) will vanish. 

However, if a wrong p(r) distribution contains 
strong positive broad peaks, ps(r) will still be positive 
at their centres and, consequently, the second integral 
in (12) will be a strong positive quantity. This implies 
that the ,(2 function cannot be a positive maximum 
in this last case. 

If one makes 

WkR j exp (i~kR,) = 1 - p  exp ( - i2 r rk t )  (15a) 

and 

W-kR, exp (i~-kR,) = 1 --p exp (i27rkt) (15b) 

and after introduction of the E's,  the corresponding 
expression for the ~ function in reciprocal space is 

O(t)  = ~ W-h exp (iSC_h) ~ IE_hEh,Eh_h,I exp i@ 3 
h h' 

= L W_, E IE-hEh'Eh-h'l COS (@3 + SO-h) (16) 
h h' 

= E m(k) W-k EIE-:.E~-.I cos ( @3 + ~-~). 
k h' 

where m is the multiplicity of k. 

(17) 

An approximation to the O function may be 
obtained by replacing the two factors m(k) and W-k 
in (17) by a constant factor, as well as by substituting 
the proper ~-k values by an average one (f-k) defined 
a s  

(~-k) = Z W-k~-k/Y W_k. 
k k 

The values of (~:-k) lie between -35  and -55  ° for the 
test examples given in § 3.3. It is interesting to note 
that this approximation is similar to the empirically 
found X M Y  function of Debaerdemaeker & 
Woolfson (1983). 

3.2. How to maximize the ~ function ? 

The 12 function as given in (17) can be maximized 
using the parameter-shift refinement procedure 
(Bhuiya & Stanley, 1963). This method has been 
adapted to phase refinement by Debaerdemaeker 
(1982) and is very useful for complicated functions. 
On the other hand, it is relatively slow, since it in- 
volves the recalculation of the complete function for 
different values of ~0h. Fortunately, the parameter- 
shift procedure will not be necessary for maximizing 
the ,(2 function, since a modified tangent formula 
(hereafter called the O tangent formula) can easily 
be derived. 

By rearranging the terms of (16), the ,O function 
becomes 

O(t) = (1/3) Y~ Y E-hEh'Eh-h'l[ W-h COS (@3 + ~:-h) 
h h' 

with 

+ Wh, COS (@3 + fh') + W.-h' COS (@3 + fh-h')] 

(18) 

= Y. E v(h, h')l E_,,E,,.E,,_,,.I cos [ @3 + $(h, h')] 
h h' 

(19) 

tan q,(h, h') = (S-h+ Sh.+ Sh-h')/(C-h+ Ch,+ Ch-h') 

v(h,h')=(1/3)[(S_h+ Sh,+ Sh-h') 2 

÷ (C_h+ Ch'÷ Ch_h,)2] I/2 

(20) 

(21) 

Ch = Wh COS SCh, Sh = Wh sin £h. (22), (23) 

The derivation of the ,O tangent formula from (19) 
can be performed in a similar way to that in which 
Debaerdemaeker et aL (1985) derived the conven- 
tional tangent formula (Karle & Hauptman, 1956) 
from (1). Effectively, it may be assumed that a 
maximum of ~ corresponds to the true phase angles 
q~h- The condition for an extremum is then 

al-2(t)/3¢. = 0 (24) 

for every h, so that 

-21E_,I Y v(h, h')lE,.Eh-h.I sin [ @3 + ~,(h, h')] =0.  
"' (25) 
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Table 3. Some of the crystal structures used as a test 
for the ~ function 

Code  Molecu la r  Refer-  
name  fo rmula  Space  g roup  Z ence 

MBH2 CtsH2403 PI 3 (a) 
NEWQB C24H20N205 P1 (as P1) 4 (b) 
MUNICH1 C2oHl6 C2 8 (¢) 
NO55 C2oH24N 4 Fdd2 16 (d) 
TUR10 C15H2402 P6322 12 (e) 
BSS C6HtaBIoOS2 P2t/a (as P20 4 ( f )  

References: (a) Poyser, Edwards, Anderson, Hursthouse, Walker, Sheldrick 
& Walley (1986); (b) Grigg, Kemp, Sheldrick & Trotter (1978); (c) Szeimies- 
Seebach, Harnisch, Szeimies, Van Meerssche, Germain & Declercq (1978); 
(d) Sheiddck & Trotter (1978); (e) Braekman, Daioze, Dupont, Tursch, 
Declercq, Germain & Van Meerssche (1981); ( f )  Rius, Miravitlles, Vifias, 
Teixidor & Casabo (1989). 

Table 4. Maximization of the 0 function with the 0 
tangent formula 

The 180 starting phases were computed 
of MBH2 (9% scattering power). 

with a f ive-atom f ragmen t  

N u m b e r  o f  cycle ]a~lma x (o) O value 

1 177 2102 
2 47 2523 
3 37 2592 
4 22 2617 
5 19 2632 
6 53 2648 
7 107 2683 
8 26 2727 
9 12 2749 

10 6 2757 
11 5 2760 
12 4 2762 
13 4 2763 
14 3 2763 
15 3 2763 
16 2 2764 

After some algebraic manipulation, (25) may be 
rearranged to give 

tan q~h = {Y~ v(h, h')lEh, En_h, 
h' 

xsin [~0h'+ q~h-h'+ ~b(h, h')]} 

x {Y" v(h, h') Eh'Eh-h'l 
h' 

× cos [~'h'+ ~,,-h'+ ~(h, h')]} -1. (26) 

The J2 tangent formula differs from the conventional 
one in the inclusion of the factor v(h, h') and the 
phase shift ~0(h,h'). For illustrative purposes, the 
v(h, h') and ~O(h, h') values for the one-dimensional 
structure described in § 2.3. are given in Table 2. 

3.3. Test calculations 

Six test structures (Table 3) have been selected to 
illustrate the behaviour of the g2 function. The shift 
t in all the test calculations is t =  (t/c)c, where the 
shift length t ranges between 0.4 and 0.55 ~ .  

To prove the convergence of the ~ tangent formula, 
a series of phase refinements with starting phases 
computed from fragments of different size of MBH2 

Table 5. Results of the application of the g2 tangent 
formula to the refinement of random phases 

The m a x i m u m  n u m b e r  o f  re f inement  cycles per  trial is be tween  20 
and  30. 

% o f  
N u m b e r  o f  N u m b e r  o f  correct  

Code  reflections tr iplets (Otest) trials 

MUNICH 1 200 4986 22 2 
NEWQB 250 2691 17 2 
NO55 150 5844 25 1.5-2 
TUR10 150 12174 39 12.5 
BSS 150 4254 98 > 15 

were performed. The 180 reflections used were those 
with the largest E values ((aest) = 17) and no rejection 
criterion was employed. Table 4 shows the refinement 
process of the phases computed with a five-atom 
fragment (9% scattering power). A weighted Fo syn- 
thesis computed with the first 52 peaks of the E map 
showed all the 54 atoms of the three independent 
molecules. Finally, an additional attempt to refine the 
phases from a four-atom fragment failed. 

The J2 tangent formula can also be used for refining 
random starting phases, and its application to three 
structures that could not be solved by conventional 
direct methods (MUNICH1,  NEWQB and NO55) 
and two easier ones (TUR10, BSS) has been investi- 
gated. The principal results are summarized in Table 
5. A refined phase set is regarded as correct in Table 
5 if a weighted Fo synthesis computed with the higher- 
ranked peaks of the E map reveals all the atoms of 
the structure. The number of higher-ranked peaks 
introduced is the number of atoms sought. 

The results given in Table 5 are quite satisfactory 
and seem to indicate that, as predicted by the theory, 
the J2 tangent formula can be applied not only to 
low-symmetry space groups, but also to high- 
symmetry ones. On the other hand, the success rate 
is variable and, as is logical, seems to depend on the 
degree of difficulty of each particular structure, but, 
in any case, it is rather high. Moreover, the refinement 
of a large number of phase sets is not a problem, 
since the maximization of the J2 function with the J2 
tangent formula is extremely fast. 

It may be concluded that the ~ tangent formula is 
a useful tool for solving crystal structures. However, 
more practical experience is still necessary for 
optimizing its use. 

Most calculations were performed with the 
OMEGA computer program (Rius & Miravitlles, 
1988). The weighted Fo syntheses and the peak inter- 
pretation were done with MULTAN84 (Main, Ger- 
main & Woolfson, 1984). 

The authors thank Dr Tony Debaerdemaeker and 
Dr Salvador Gali for valuable suggestions as well as 
Professor Dr Gabriel Germain for supplying the data 
for the test structures. The financial aid of the CSIC 
and CAICYT is also gratefully acknowledged. 
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Abstrac t  

A 'geometric element' is defined, for any given sym- 
metry operat ion,  as a geometric item that allows the 
operation (after removing any intrinsic translation) to 
be located and oriented. In the case of  an inversion, 
a (screw-) rotat ion or a (glide-) reflection, it is respec- 

* Appointed 14 November 1984 and 10 August 1987 (see Acta 
Cryst. (1986). A42, 64 for original membership) under ground rules 
outlined in Acta Cryst. (1979). A35, 1072. Final Report accepted 
10 January 1989 by the IUCr Commission on Crystallographic 
Nomenclature and 15 March 1989 by the Executive Committee. 

t Present address: Institut f/Jr Kristallographie der Universitfit 
Tiibingen, Charlottenstrasse 33, D-7400 T/ibingen, Federal 
Republic of Germany. 

tively a point,  line or plane. In the case of  a rotoinver- 
sion, the geometric element consists of  the axis of  the 
rotation part  and the center of the inversion part.  As 
a general concept,  the geometric element may be 
justified by a mathemat ical  definition (as given in the 
Appendix) .  A "symmetry element" (of a given crystal 
structure or object) is defined as a concept with a 
double meaning,  namely the combination of a 
geometric element with the set of symmetry operations 
having this geometric element in common ('element 
set'). There is no overlap between element sets of  a 
given structure. Together with the identity and the 
translations,  for which a geometric element is not 
defined, the element sets cover all symmetry  
operations.  
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